skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leal, Isabel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider a product $$X=E_1\times \cdots \times E_d$$ of elliptic curves over a finite extension $$K$$ of $${\mathbb{Q}}_p$$ with a combination of good or split multiplicative reduction. We assume that at most one of the elliptic curves has supersingular reduction. Under these assumptions, we prove that the Albanese kernel of $$X$$ is the direct sum of a finite group and a divisible group, extending work by Raskind and Spiess to cases that include supersingular phenomena. Our method involves studying the kernel of the cycle map $$CH_0(X)/p^n\rightarrow H^{2d}_{\acute{\textrm{e}}\textrm{t}}(X, \mu _{p^n}^{\otimes d})$$. We give specific criteria that guarantee this map is injective for every $$n\geq 1$$. When all curves have good ordinary reduction, we show that it suffices to extend to a specific finite extension $$L$$ of $$K$$ for these criteria to be satisfied. This extends previous work by Yamazaki and Hiranouchi. 
    more » « less